
A Comprehensive Understanding of
Code-mixed Language Semantics using

Hierarchical Transformer

by
Tharun S

Under the Supervision of
Dr. Tanmoy Chakraborty

and
Dr. Md. Shad Akhtar

Indraprastha Institute of Information Technology Delhi
May, 2022

A Comprehensive Understanding of
Code-mixed Language Semantics using

Hierarchical Transformer

by
Tharun S

Submitted
in partial fulfillment of the requirements for the degree of

Master of Technology

to

Indraprastha Institute of Information Technology Delhi
May, 2022

Certificate
This is to certify that the thesis titled “A Comprehensive Understanding of Code-
mixed Language Semantics using Hierarchical Transformer” being submitted by
Tharun S to the Indraprastha Institute of Information Technology Delhi, for the
award of the Master of Technology, is an original research work carried out by him
under my supervision. In my opinion, the thesis has reached the standards fulfilling
the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any other
university or institute for the award of any degree/diploma.

May, 2022

Dr. Tanmoy Chakraborty
Department of Computer Science & Engineering

Indraprastha Institute of Information Technology Delhi
New Delhi 110 020

Dr. Md. Shad Akhtar
Department of Computer Science & Engineering

Indraprastha Institute of Information Technology Delhi
New Delhi 110 020

i

Acknowledgement
I would like to thank Dr. Tanmoy Chakraborty, my advisor, for believing in me de-
spite my lack of research experience. I respect his enthusiasm for research and the
basics of his lectures, which have inspired me to pursue a career in Natural Language
Processing research. I will carry the lessons I have learned from my advisor’s on-
going participation with me for the rest of my life. I am grateful for my advisor’s
unwavering support during my time with him, from not skipping a single weekly
meeting to allowing constant space to explore creative ideas.

I would also like to express my gratitude to Dr. Md. Shad Akhtar, my co-advisor,
for patiently guiding me through my research journey and offering helpful insights
along the way till I was up to speed in my research career. My research discipline
can be attributed to my co-advisor, who worked with me to see my projects through
to completion. I will be eternally grateful for his kindness.

Many thanks to Ayan Sengupta for his assistance with this research project. His
clarity on the research challenge aided in identifying the proper study direction. In
addition, I have worked on other research projects alongside Aseem Srivastava, Sarah
Masud, and Shivam Sharma, which has provided me with valuable insights into a va-
riety of areas that I could not have explored without their help. Overall, the members
of the Laboratory for Computational Social Systems have influenced my academic
career in various ways, and I am grateful to them all.

Finally, I would like to express my gratitude to my family for supporting me
during Covid’s difficult times and providing me with the necessary setting to study a
Master’s degree primarily from home. They were a continual source of support for
me who had stood the test of time beside me. I would like to thank my girlfriend, for
enlightening me when I was at my lowest, as well as my friends and classmates with
whom I could talk and connect my difficulties the majority of the time.

ii

Abstract
Being a popular mode of text-based communication in multilingual communities,
code-mixing in online social media has became an important subject to study. Learn-
ing the semantics and morphology of code-mixed language remains a key challenge,
due to scarcity of data and unavailability of robust and language-invariant representa-
tion learning technique. Any morphologically-rich language can benefit from charac-
ter, subword, and word-level embeddings, aiding in learning meaningful correlations.
In this paper, we explore a hierarchical transformer-based architecture (HIT) to learn
the semantics of code-mixed languages. HIT consists of multi-headed self-attention
and outer product attention components to simultaneously comprehend the seman-
tic and syntactic structures of code-mixed texts. We evaluate the proposed method
across 6 Indian languages (Bengali, Gujarati, Hindi, Tamil, Telugu and Malayalam)
and Spanish for 9 NLP tasks on 17 datasets. The HIT model outperforms state-
of-the-art code-mixed representation learning and multilingual language models in
all tasks. We further demonstrate the generalizability of the HIT architecture us-
ing masked language modeling-based pre-training, zero-shot learning, and transfer
learning approaches. Our empirical results show that the pre-training objectives sig-
nificantly improve the performance on downstream tasks.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Experiments . 2
1.4 Contributions . 2

2 Related Work 4
2.1 Studies on Code-mixing . 4
2.2 Generalization tasks . 5
2.3 Comparison with previous work 6

3 Dataset and Tasks 7
3.1 Sentiment Classification . 7
3.2 PoS Tagging . 7
3.3 Machine Translation . 9
3.4 Response Generation . 9
3.5 Intent Detection and Slot Filling 9
3.6 Sarcasm Detection and Humour Classification 10

4 Our Methodology 11
4.1 Fused-Attention Mechanism (FAME) 11

4.1.1 Multi-Headed Attention 11
4.1.2 Outer-Product Attention 12

4.2 HIT Encoders . 13
4.2.1 Character-level HIT . 13
4.2.2 Word-level HIT . 13

4.3 Task-specific Layers . 14

5 Experiments and Results 15
5.1 Evaluation Metrics . 15
5.2 Baseline Models . 15

5.2.1 BiLSTM . 15
5.2.2 Subword-LSTM . 15

iv

5.2.3 ML-BERT . 15
5.2.4 HAN . 16
5.2.5 CS-ELMo . 16
5.2.6 MURIL . 16

5.3 Experimental Setup . 16
5.4 Experimental Results . 17

5.4.1 Sentiment Classification 17
5.4.2 Named-Entity Recognition 17
5.4.3 PoS Tagging . 19
5.4.4 Machine Translation . 19
5.4.5 Sarcasm Detection and Humour Classification 19
5.4.6 Intent Detection and Slot Filling 20
5.4.7 Response Generation . 21

5.5 Comparison with MURIL . 21
5.6 HIT’s Performance on Monolingual Data 23

6 Generalization through Pre-training 25
6.1 Pre-training Objectives . 25

6.1.1 Masked Language Modeling (MLM) 25
6.1.2 Zero-Shot Learning (ZSL) 26

6.2 Results with Pre-training Objectives 27
6.2.1 Masked Language Modeling 27
6.2.2 Zero-Shot Learning . 27
6.2.3 Transfer Learning . 28

7 Error Analyses and Discussion 29
7.1 Fine-tuning Tasks . 29
7.2 Generalization tasks . 31

7.2.1 Masked Language Modeling 31
7.2.2 Zero-Shot Learning . 32

8 Conclusion and Future Work 33

v

List of Tables

3.1 Statistics for all datasets across all tasks. Here Total refers to the
number of samples in the entire dataset. * denotes 90-10 ratio. For
intent detection and slot filling tasks, tokens are not mentioned for
individual languages due to having a minimal variation among them. 8

3.2 Statistics of intent values tagged with each utterance. This is com-
mon across all languages of the dataset, namely Bengali, Hindi, Malay-
alam and Tamil. Most of the intents are self-explanatory, some def-
initions to add to expl-conf - explicit confirmation on bot’s offer,
impl-conf - implicit confirmation on bot’s offer, reqalts - user re-
quest to narrow down on a particular slot, reqmore - user request for
more choices . 9

3.3 Mapping of slot values corresponding to each intent for which slots
are tagged. 10

5.1 Experimental results. Highest scores are highlighted in bold. 18
5.2 Experimental results on the MaSaC dataset. 19
5.3 Experimental results on the intent detection and slot filling tasks. . . 20
5.4 Experimental results on response generation. 21
5.5 Comparative study between HIT and MURIL. * denotes the respec-

tive best baseline system from Tables 5.1 – 5.4. 22
5.6 Performance of HIT on monolingual tasks. Best scores are high-

lighted in bold. 24

6.1 Experimental results of our HIT model on (a) Masked Language
Modeling for Hindi-English, (b) Zero-Shot Learning for Hindi-English,
and (c) Transfer learning for Hindi-English and Spanish-English datasets.
For MLM and ZSL, we highlight the rows where the model achieves
better result with pre-training. For transfer learning, we highlight the
rows where the model achieves better performance by transferring
knowledge from the source task to target task. 26

7.1 Confusion matrices in percentage (%) on Hindi code-mixed datasets. 30

vi

7.2 Actual and generated responses with input text are shown for a single
round of user-bot interaction. Red color denotes contextually incor-
rect responses. The input represented here is only the current user
utterance for which the bot response is predicted. To understand the
complete model input at each instance, refer to Section 3 A. 31

vii

List of Figures

4.1 Hierarchical Transformer along with our novel FAME mechanism
for attention computation. 12

viii

Chapter 1

Introduction

1.1 Background

India is known for its linguistic diversity and bilingual communities. Due to such
diversity, English is adopted as one of the official languages, making it ubiquitous
throughout India from official purposes to the school’s medium of teaching. There-
fore, it is hard for the communities to avoid the influence of English in their na-
tive languages, and this results in the popular form of communication, called code-
mixing. Code-mixing (aka code-switching) is a linguistic phenomenon where two or
more languages are alternatively used in conversations. This primarily makes use of
a single script in case of text, most often Latin script.

1.2 Motivation

Given the immense popularity of this form of communication, there is a dire need
to study the patterns that could better understand its linguistic properties and can be
used for useful predictions. The major limitation of existing studies on code-mixed
data is that the variations across alternating languages do not generalize well to all
languages. This calls for an intuitive approach to identify the commonalities and
differences across languages that is task-invariant and language-agnostic.

Various methodologies studied the contexts of code-mixed texts. Recent works
by Pratapa et al. [1] and Aguilar et al. [2] presented analyses on code-mixed texts
on learning meaningful representations. As most NLP tasks emphasize structural
and contextual information, the former study focuses on multi-lingual embedding
to understand the nuances across languages. The latter uses hierarchical attention
on character n-grams to learn word semantics. Building on these ideas, we [3] re-
cently explored a HIerarchically attentive Transformer (HIT) framework that learns
sub-word level representations. It employs a fused attention mechanism (FAME)
– a combination of outer product attention [4] with multi-headed self attention [5].
Since code-mixed texts mostly follow informal contexts, minor misspellings tend to
represent the same word with a different sub-word level representations. This is very
well handled by character-level HIT that learns to represent similar words nearby in

1

CHAPTER 1. INTRODUCTION Tharun S

the embedding space. Finally, the character-level, sub-word-level, and word-level
representations are fused to obtain a robust representation of code-mixed text. This
embedding can be used to train any downstream task which requires code-mixed
language processing. In this paper, we extend our earlier effort on HIT, by including
extensive evaluation, new insights, and a detailed discussion on the generalization
capability of HIT as the code-mixed representation learning model.

1.3 Experiments

To this end, we evaluate the HIT model on 9 NLP tasks – 4 classification tasks
(sentiment classification, humour classification, sarcasm detection, and intent detec-
tion), 3 sequence labeling tasks (PoS tagging, NER, and slot-filling), and 2 generative
tasks (machine translation and dialog/response generation). These tasks are spread
across 6 Indian languages (Hindi, Bengali, Tamil, Telugu, Gujarati, Malayalam) and
Spanish language, spanning over 17 datasets1. Moreover, out of these tasks, 3 of them
(intent detection, slot-filling, and response generation) belong to a conversational di-
alog setting. Our evaluation suggests that HIT learns better and robust inferences, as
compared to the other state-of-the-art models. Also, the generalized word embedding
of HIT can be further applicable to any downstream tasks. We show its effectiveness
in representing word embedding in a contextual space and how it can be used to find
similarities across inputs.

Furthermore, towards learning a task-invariant robust semantic understanding from
code-mixed texts, we adopt a zero-shot learning objective to learn semantic similar-
ity across different code-mixed texts without any explicit label. Our empirical study
shows the effectiveness of zero-shot learning over traditional supervised learning ob-
jective, even for noisy code-mixed texts.

1.4 Contributions

The contributions of the current work, in addition to our earlier work [3], are as
follows:

• We show the effectiveness of HIT on sarcasm detection, humour classification,
intent detection, and slot filling tasks on code-mixed texts on 6 Indian languages.

• We show the effectiveness of the HIT model’s word representations on generation
tasks such as response generation over a conversational dataset.

1In each case, English is the embedded language.

2

CHAPTER 1. INTRODUCTION Tharun S

• Our work offers a very first study on understanding the generalizability of code-
mixed representation learning on downstream classification tasks.

3

Chapter 2

Related Work

2.1 Studies on Code-mixing

Code-mixing research has been around for quite some time, and most of the work
has emphasized embedding space with bilingual embedding and cross-lingual trans-
fer as discussed in several studies [6, 7]. Akhtar et al. [8] discussed the low-resource
constraints in code-mixed datasets and how bilingual word embedding can be lever-
aged using a parallel corpus. Extending on the parallel corpus approach, Faruqui
et al. [9] proposed Canonical Correlation Analysis (CCA) to project multilingual
properties in the monolingual space. Though this work has effectively helped to un-
derstand monolingual information better, the vectors encoded do not transfer well
to semantic tasks as much as they do for syntactic tasks. Similar findings [10, 11]
showed learning multiple language embedding in a single embedding space.

Expanding to generation tasks which add another layer of complexity, Labutov
et al. [12] showed L2 method pedagogy to generate code-mixed texts. It is based
on static optimization, and the generation does not perform well, bounded to the
context. Gupta et al. [13] explored the question-answering domain of the genera-
tion task. They proposed a CNN-BiGRU based model with bi-linear attention in a
common embedding space that falls short of learning distinctions among the code-
mixed representations. The authors also discussed a pipeline model using NER and
PoS tagging for code-mixed question generation, which augments errors along the
pipeline.

Banerjee et al. [14] proposed one of the large-scale code-mixed datasets on con-
versation. Prior to this, there had not been any comprehensive conversational dataset
in the code-mixed domain. It is built upon the DSTC2 response generation dataset,
which has been code-mixed into an English-Indic language combination. This is a
robust dataset built with manual annotations, which has formed the basis for response
generation, intent detection, and slot filling tasks in a code-mixed setup. Srivastava
et al. [15] expanded the notions that need to be analyzed when it comes to code-
mixed tasks. They discussed 6 potential issues associated with code-mixed datasets
– ambiguity, spelling variations, named-entity recognition, informal writing, mis-
placed punctuation, and missing context. It argued serious limitations in the current

4

CHAPTER 2. RELATED WORK Tharun S

machine translation systems and hence the sequence generation tasks.
Tangentially, one of the approaches is to consider sub-word level. Since many

languages in code-mixed texts are morphologically rich languages, we can leverage
them in learning better representations. Prabhu et al. [16] used a CNN-LSTM model
to learn sub-word embedding from 1-dimensional convolutions over character inputs.
This effectively translates to better results on sentiment classification tasks on code-
mixed datasets. These representations, when matched with corresponding attention
mechanisms to learn the inter-dependencies, show promising results as discussed in
the HAN model [17]. Since a document represents an extended context and can
involve multiple key sentences/words, the HAN model proposes hierarchical atten-
tion over the document that learns to attend to keywords and sentences, improving
the classification task. Along similar lines, Aguilar et al. [2] proposed CS-ELMO
for code-mixed datasets, which works well using the hierarchical attention model by
including the bi-gram and tri-gram level of sub-word embedding.

2.2 Generalization tasks

Language modeling is the task of learning how a text is formed. Devlin et al.
[18] presented a seminal work on language modeling, where the authors developed a
pre-trained encoder, pre-trained on huge monolingual corpus with masked language
modeling (MLM) objective. The self-supervision in MLM allows to learn repre-
sentation of texts, even without using any supervision in terms of external labels.
In a very recent work, Khanuja et al. [19] proposed a pre-trained language model,
MuRIL, that is trained on monolingual Indian texts. They explicitly augment texts
with both translated and transliterated text pairs to generate parallel corpus. As com-
pared to monolingual or bilingual language models, studies on code-mixed language
model are rare. Pratapa et al. [20] explored sampling-based language models for
Hindi-English code-mixed texts. The effectiveness of pre-trained language models
on downstream tasks has been shown in numerous recent works. Another popu-
lar avenue of self-supervised learning in text data is zero-shot or few-shot learning,
where the representation of a text is learned on one task and is reused in other tasks.
Zero-shot learning helps in understanding a better generalized representation of texts.
A recent study [21] showed the few-shot learning capabilities of language models.
Moreover, Gupta et al. [22] adopted an unsupervised pre-training objective for the
code-mixed sentiment classification task. On a similar line, Yadav et al. [23] con-
ducted zero-shot classification by transferring knowledge from different monolingual
and cross-lingual word embeddings.

5

CHAPTER 2. RELATED WORK Tharun S

2.3 Comparison with previous work

HIT [3] is one of the first efforts that take both the structural and semantic in-
formation of code-mixed texts into account, as compared to the existing one that
focuses mostly on learning semantics from code-mixed data. HIT demonstrates the
effectiveness of hierarchical transformer-based representation learning on 5 Indian
code-mixed languages across sentiment classification, PoS, NER and machine trans-
lation tasks. Our current work focuses on the generalizability aspect of code-mixed
representation learning, where we learn the representation of a code-mixed text and
reuse it for multiple tasks. To the best of our knowledge, ours is the first large-scale
study of code-mixed learning where we evaluate our methodology on 9 diverse tasks
spanning sequence-labelling, classification, and generation tasks. We highlight the
key areas where our current work extends the previous study:

• This study particularly focuses on the generalizibility aspect of the model.

• We add different pre-training objectives – masked language modeling and zero-
shot learning for better generalization and domain adaptation.

• We extend the empirical study to more Indian languages across a variety of tasks
including response generation, sarcasm detection, humour classification, intent de-
tection and slot filling.

6

Chapter 3

Dataset and Tasks

In this chapter, we elaborate the different datasets and tasks used for evaluating
our HIT framework. We report the statistics of the datasets in Table 3.1.

3.1 Sentiment Classification

We use the dataset proposed by Chakravarthi et al. [24] for Tamil and Malayalam
code-mixed languages. These are the collection of comments made on YouTube
videos and consist of 4 sentiment labels, namely – positive, negative, neutral, and
mixed-feelings. For Hindi-English, we explore the code-mixed dataset for sentiment
classification developed by Prabhu et al. [16]. It comprises popular public pages
on Facebook. They follow a three-level polarity scale - positive, negative, and neu-
tral. There are about 15% negative, 50% neutral, and 35% positive comments. For
the Spanglish (Spanish-English) dataset, we select the SemEval-2020 Task 9 dataset
[25], which is a collection of tweets collated with standard three-level polarity.

Named-Entity Recognition (NER): For NER, we utilize Hindi [26] and Spanish
[27] datasets with 2079 and 52781 sentences, respectively. In Hindi, the labels are
name, location, and organization, while the Spanish dataset has 6 additional labels –
event, group, product, time, title, and other.

3.2 PoS Tagging

We use 3 different PoS datasets for Hindi-English, Bengali-English, and Telegu-
English code-mixed texts. The Hindi-English code-mixed PoS dataset [28] has 1489
sentences collected from Twitter. Each token in the sentence is tagged with one of the
14 tags. The Bengali and Telugu datasets are part of the ICON-2016 workshop1 and
have 1982 and 626 sentences, respectively. These are collected from various online
social network channels and contain 52 and 39 tags, respectively. For Spanish, we
use Linguistic Code-switching Evaluation (LinCE) PoS dataset [29] consisting of
more that 35k sentences with 14 tags.

1http://amitavadas.com/Code-Mixing.html

7

http://amitavadas.com/Code-Mixing.html

CHAPTER 3. DATASET AND TASKS Tharun S

Tasks Lang Train Test Total #Labels#Sent #Tokens #Sent #Tokens

POS

Hi* 1191 6,575 148 2,300 1,489 14
Te* 1,585 7,190 198 2,927 1,982 52
Be* 500 4,108 62 631 626 39
Sp 27,893 11,897 4,298 3,866 36,489 17

NER Hi* 1,663 9,397 207 3,272 2,079 7
Te* 33,611 52,680 10,085 23,787 53,781 19

Sentiment

Hi* 3,103 9,005 387 3,191 3,879 3
Ta 11,335 27,476 3,149 10,339 15,744 4
Ma 4,851 16,551 1,348 6,028 6,739 4
Sp 12,194 28,274 1,859 7,822 15,912 3

MT En(Src)
248,330

84,609
2,000

5,314
252,330

-
Hi(Tgt) 108,442 5,797

Sarcasm/Humour Hi* 16,123 30,036 2,475 9,333 15,576 2
Intent Detection Be, Gu, Hi,

Ta
26,964 1521 21,386 580 48,350 17

Slot Filling Be, Gu, Hi,
Ta

26,964 1521 21,386 580 48,350 15

Response Generation

Hi 14,436 1576 2,244 576 16,680

-
Ta 14,930 1600 2,500 650 17,430
Gu 14,300 1503 2,176 526 16,476
Be 14,100 1423 2,050 490 16,150

Table 3.1: Statistics for all datasets across all tasks. Here Total refers to the number
of samples in the entire dataset. * denotes 90-10 ratio. For intent detection and
slot filling tasks, tokens are not mentioned for individual languages due to having a
minimal variation among them.

8

CHAPTER 3. DATASET AND TASKS Tharun S

Intent Detection
Split ack affirm cant.help confirm deny expl-conf impl-conf inform
Train 889 421 870 199 11 595 1009 8723
Test 684 432 838 131 22 808 1207 7144

Split negate offer repeat reqalts reqmore request silence thankyou welcomemsg
Train 109 466 287 240 25 3727 2734 3070 1589
Test 82 337 743 284 165 2387 2586 2337 1199

Table 3.2: Statistics of intent values tagged with each utterance. This is common
across all languages of the dataset, namely Bengali, Hindi, Malayalam and Tamil.
Most of the intents are self-explanatory, some definitions to add to expl-conf - ex-
plicit confirmation on bot’s offer, impl-conf - implicit confirmation on bot’s offer,
reqalts - user request to narrow down on a particular slot, reqmore - user request for
more choices

3.3 Machine Translation

We adopt the Hindi-English code-mixed parallel corpus for machine translation
[30] comprising more than 200k sentence pair.

3.4 Response Generation

Built on the DSTC2 dataset [31], Banerjee et al. [14] made a comprehensive
and faithful adaptation to Indic code-mixed languages, namely Hindi, Bengali, Gu-
jarati, and Tamil code-mixed languages. It consists of 49k utterances with about
6.7k unique utterances. The number of average utterances per dialog is 15.19, and
the vocabulary size for English dataset is 1229. In comparison, the average levels
of code-mixing in each utterance of Hindi, Bengali, Gujarati, and Tamil are 12.11,
14.28, 11.80, and 12.96, respectively.

3.5 Intent Detection and Slot Filling

Further to Banerjee et al. [14], the intent detection and slot filling values are tagged
corresponding to each utterance for all the code-mixed datasets, namely Hindi, Ben-
gali, Gujarati, and Tamil. A total of 17 intent values are used to represent each ut-
terance. Moreover, the dataset defines 7 slots to detect user request terms area, food,
price range, address, postcode, phone and slot. Details of intents and slot-values are
depicted in Tables 3.2 and 3.3, respectively.

9

CHAPTER 3. DATASET AND TASKS Tharun S

Intents Slots
cant.help area, food, price range, name

confirm, deny, expl-conf, impl-conf area, food, price range
inform addr, area, food, name, price range, phone, postcode
offer name

request slot

Table 3.3: Mapping of slot values corresponding to each intent for which slots are
tagged.

3.6 Sarcasm Detection and Humour Classification

We use the Hindi-English code-mixed MaSaC dataset provided by Bedi et al. [32].
This is collected from a popular Indian TV show ‘Sarabhai vs Sarabhai’. It consists
of 15, 576 utterances from 400 scenes across 50 episodes. Out of these utterances,
3, 139 are sarcastic utterances and 5, 794 are humourous utterances. A point to note
is an utterance can be both sarcastic and humourous at the same time.

10

Chapter 4

Our Methodology

In this chapter, we describe HIT and how it incorporates character and word em-
beddings and hierarchical attention together to learn a robust linguistic understanding
of code-mixed texts. HIT’s framework is based on the encoder-decoder architecture
[5] and the hierarchical attention network [17]. The character- and word-level HIT
encoders work in a hierarchy to learn the semantics of a code-mixed sentence (inter-
changeably, text). Both these encoders make use of the fused attention mechanism
(FAME), which is a combination of multi-headed self-attention and outer product
attention [4]. The outer product attention aids in learning lower-order relationships
between arbitrary pair of words and give better relational reasoning, while the multi-
headed self-attention learns a higher-level semantic understanding. We illustrate the
model architecture in Figure 4.1.

4.1 Fused-Attention Mechanism (FAME)

FAME is a combination of multi-headed self-attention (MSA) and outer-product
attention (OPA). We extend the vanilla transformer architecture [5] to incorporate
the outer-product attention and obtain the higher-order relationships among input
text. Given an input x, we use query, key and value weight matrices W self

Q ,W self
K

and W self
V to project onto Qself , Kself and V self , respectively. Likewise for OPA, we

use W outer
Q ,W outer

K and W outer
V to obtain Qouter, Kouter and V outer. We combine the

representations learned using MSA and OPA by taking a weighted sum as follows;

Z = α1 · Zself ⊕ α2 · Zouter (4.1)

where ⊕ denotes the element-wise addition while α1 and α2 are the weights learned
by the softmax layer for the respective attention layers, thus producing the weighted
sum output.

4.1.1 Multi-Headed Attention

We adopt the MSA module from Vaswani et al. [5] that makes a scaled dot product
attention between query and key vectors to produce the value vector Zself by learning

11

CHAPTER 4. OUR METHODOLOGY Tharun S

w1

FAME

Add, Norm, FFN

H
IT

 c
ha

ra
ct

er
 e

nc
od

er
 (i

)

c1 c2 c3 cM

w2 w3 wN

H
IT

 w
or

d
en

co
de

r (
1)

FAME

Add, Norm, FFN

HIT word
encoder (2) . . .

Identical encoders

Task-specific network

Value
(Vself)

Softmax

Query
(Qself)

☉

Tanh
(element-wise)

Key
(Kself)

FAME

O
PA

M
SA

Query
(Qouter)

Key
(Kouter)

Value
(Vouter)

Softmax

Element-wise
addition

Element-wise multiplication

Dot-product

☉

Outer product

Scalar multiplication

Nomenclature

Figure 4.1: Hierarchical Transformer along with our novel FAME mechanism for
attention computation.

the appropriate weights as follows:

Zself =
N∑
i

softmax
(
q.ki√
dk

)
vi,∀q ∈ Qself (4.2)

where N is the length of the input sequence, and d is the dimension of the key vector.

4.1.2 Outer-Product Attention

We employ the outer-product attention [4] as another attention mechanism. The
outer product attention and the multi-headed self-attention differ in terms of opera-
tors only – their operations remain the same. OPA makes use of the row-wise tanh
activation function instead of the softmax activation function. Additionally, MSA
uses a scalar dot product, whereas OPA computes element-wise multiplication be-
tween the query and the key vectors. Finally, we perform outer-product between the

12

CHAPTER 4. OUR METHODOLOGY Tharun S

value vector and the softmax output. As OPA helps with better relational reasoning
across pairs of elements, lower-level associations are learned better. The formula is
as follows:

Zouter =
N∑
i

softmax
(
q ⊙ ki√

dk

)
⊗ vi,∀q ∈ Qouter (4.3)

where ⊙ is element-wise multiplication, and ⊗ is the outer product.
Let query and key be of dimension ‘qk’ and value vector of dimension ‘v’, then

the resultant output of OPA operation is a matrix of dimension qk ∗ v. We follow it
by matrix transformations to align the dimensions of MSA (Zself) and OPA (Zouter)
before taking a weighted sum Z = α1 ·Zself ⊕α2 ·Zouter. The final output of FAME
is a vector for each input token.

4.2 HIT Encoders

4.2.1 Character-level HIT

Given a word wi = {c1, c2, · · · , cm} having m characters, character-level HIT
leverages the formation of character sequences. The primary objective of the character-
level HIT model is to understand the phonetics of code-mixed language and to bypass
the need of a pre-defined word vocabulary.

The hidden representation learnt through the character-level HIT is fed to a layer-
normalization layer [33] along with a residual connection. Subsequently, we pass
it through a position-wise feed-forward layer. In the model, we stack lc number of
identical encoders, where each layer i of character-level HIT learns a representation
⟨h(i)

c1 , h
(i)
c2 , h

(i)
c3 , · · ·h

(i)
cm⟩.

Finally, we apply a hierarchical attention operator, as defined by Yang et al. [17],
to obtain the final word representation h

(c)
wi .

4.2.2 Word-level HIT

We utilize the word representation obtained from character-level HIT in learning
a higher order semantics for each code-mixed word. To obtain representation at the
sentence level, we adapt the word-level HIT encoder to combine ⟨h(c)

w1 , h
(c)
w2 , h

(c)
w3 , · · ·h

(c)
wn⟩

with a dynamic word embedding ⟨h(w)
w1 , h

(w)
w2 , h

(w)
w3 , · · ·h

(w)
wn ⟩ learned by utilizing only

words. To preserve the relative positioning among different word tokens, we add
the positional encoding [5] ⟨pw1 , pw2 , pw3 , · · · pwn⟩ with the above representation.

13

CHAPTER 4. OUR METHODOLOGY Tharun S

The character-level HIT encoder is shared across different word encoders. We de-
sign each encoder layer of word-level HIT in a similar fashion as we design for the
character-level, however, considering the sequence of words as input.

4.3 Task-specific Layers

We evaluate our HIT representation on various downstream tasks such as the se-
quence labeling, classification, and generation tasks. We use average pooling for the
classification tasks to aggregate the word representations extracted from the word-
level HIT encoder. However, for the sequence prediction tasks, we skip the average
pooling and use the original word-level representation instead. In addition to the
embedding learned by the HIT model, we concatenate tf-idf based statistical feature.
The tf-idf vectors capture the uni-, bi-, and tri-gram features of the inputs, which aid
in eliminating handcrafted features as explained in [34]. This assists in understanding
the global context of the input, which, combined with hierarchical representations,
yields better results.

14

Chapter 5

Experiments and Results

In this chapter, we elaborate on the experiments performed, results of our evalua-
tions, and the required analyses carried out as part of the results.

5.1 Evaluation Metrics

For the classification and sequence-labelling tasks, we report macro Precision
(Prec), Recall (Rec), and F1-scores. On the other hand, for the generative task, we
use Rouge (RL) [35], BLEU (B) [36], and METEOR (M) [37] for the evaluation.

5.2 Baseline Models

5.2.1 BiLSTM

It is presented as a preliminary neural network baseline. For competitive pre-
dictions on sequence tasks, Conditional Random Fields (CRF) layer on the top is
incorporated for the final classification. [38]

5.2.2 Subword-LSTM

Instead of word-level or character-level representations, Prabhu et al. [16] pro-
posed to learn the subword-level representations as a linguistic prior. Following a
convolutional and a max pool layer, it applies 2 LSTM layers. We restrict ourselves
to using this model only for sentiment classification as the model does not take word
boundaries into account. [16]

5.2.3 ML-BERT

It is trained on BERT [18] to handle multilingual tasks. BERT uses the transformer
architecture effectively by using the pre-training objective, called Masked Language
Modeling (MLM). [18]

15

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

5.2.4 HAN

Hierarchical Attention network (HAN) combines 2 encoders, one at the word level
and another at the sentence level, with attention for each level of the hierarchy. [17]

5.2.5 CS-ELMo

It is based on ELMo [39], which is trained on English language and uses transfer
learning to extend to other code-mixed languages. It is one of the the most recent and
state-of-the-art models for code-mixed languages. It has shown to leverage word rep-
resentations as a function of the entire input sequence giving the model a distinctive
advantage. [2]

5.2.6 MURIL

MURIL is a recently developed language model pretrained over large corpora of
Indian languages. It uses monolingual corpora of 17 Indian languages translated and
transliterated for pre-training purposes and reports the state-of-the-art results on the
cross-lingual XTREME [40] benchmark. [19]

5.3 Experimental Setup

For all tasks, we consider categorical cross entropy (CE) as the loss function. We
employ Adam optimizer [41] with η = 0.001, β1 = 0.9, β2 = 0.999 and train for 500
epochs. We use dropout = 0.2 for the regularization, whereas batch size is set to 32.
Further, to dynamically reduce learning rate on plateaus, we monitor the validation
loss with a patience of 20 epochs and reduce the learning rate by a factor of 0.7. All
the models are trained with early stopping (patience = 100) to reduce over-fitting.
For ML-BERT and MURIL models, we use a smaller learning rate of 2e-5. These
two models are adopted from HuggingFace Transformers library1. We extract an
128-dimensional vector for each word and character token. The maximum text length
used is 40 and maximum word length is set as 20. To extract the statistical features
from the input texts, we use TfIdfVectorizer2 from Sklearn library. We concatenate
two different tfidf vectors - using word features (after removing stopwords) and the
other with character features. In both these methods, we use n-gram features with

1https://github.com/huggingface/transformers
2https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction

.text.TfidfVectorizer.html

16

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

n ∈ {1, 2, 3}. To remove too frequent and rare tokens, the minimum frequency of
token in the corpus is set to 2 and the maximum frequency is set to 6.

5.4 Experimental Results

We explore variations of the features fed into the model. Precisely, we include
ablations on our model on 2 of the modules. They are termed as (−)Atnouter and
(−)char HIT in all the result tables. The former’s experiments are carried out by
removing the outer attention module, which we have essentially fused with existing
self-attention module, an important component of our FAME architecture. The lat-
ter is achieved by excluding character-level embeddings from HIT Transformer and
studies the effects of it. Both these ablations are performed across all tasks. We eval-
uate HIT and all other baselines for all the tasks in subsequent sections. We elaborate
the comparison between HIT and MURIL in a separate subsection.

5.4.1 Sentiment Classification

We show results in Table 5.1a. On comparison, we observe that HIT outperforms
the baselines in all languages on the basis of F1 scores. For Hindi, CS-ELMo and
HAN perform well; HIT considerably outperforms them by 3.6%. We observe simi-
lar phenomena for all languages with HIT reporting a minimum of 2% improvement
over the best baseline (HAN) – for Spanish, HAN is the better performing base-
line among all. The ablation study is shown in Table 5.1a. We see that removing
character-level embeddings from the input features has a detrimental effect across the
languages in comparison with all the metrics. On the other hand, except for Malay-
alam, removing outer-product attention reduces the performance of HIT model. In
all, HIT produces state-of-the-art results.

5.4.2 Named-Entity Recognition

We show results in Table 5.1b. As it is observed in the previous task, HIT outper-
forms the existing systems on both Hindi and Spanish languages in NER. Likewise,
CS-ELMo is the better performing baseline among all; however, HIT reports 1.2%
better F1-score for both Hindi-English and Spanish-English. This conveys that the
HIT model translates well for sequence tagging tasks as well.

17

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

Model
Hindi Tamil Malayalam Spanish

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
BLSTM-CRF 0.643 0.628 0.636 0.502 0.428 0.451 0.653 0.588 0.612 0.429 0.431 0.428
Subword-LSTM 0.632 0.634 0.632 0.503 0.418 0.426 0.577 0.592 0.581 0.445 0.437 0.432
HAN 0.680 0.671 0.673 0.490 0.411 0.439 0.639 0.611 0.634 0.449 0.439 0.440
ML-BERT 0.609 0.604 0.599 0.260 0.310 0.280 0.600 0.630 0.610 0.451 0.419 0.437
CS-ELMO 0.679 0.661 0.667 0.515 0.432 0.459 0.666 0.623 0.642 0.429 0.453 0.431
HIT 0.745 0.702 0.703 0.499 0.451 0.473 0.710 0.628 0.651 0.502 0.454 0.460
(−)Atnouter 0.687 0.665 0.667 0.520 0.448 0.455 0.718 0.624 0.655 0.463 0.440 0.445
(−)char HIT 0.652 0.631 0.650 0.504 0.418 0.432 0.659 0.605 0.627 0.448 0.438 0.433

(a) Sentiment classification

Model
Hindi Spanish

Prec Rec F1 Prec Rec F1
BLSTM 0.622 0.781 0.579 0.581 0.659 0.603
HAN 0.721 0.767 0.695 0.615 0.679 0.644
ML-BERT 0.792 0.779 0.714 0.652 0.623 0.643
CS-ELMO 0.815 0.780 0.735 0.683 0.668 0.671
HIT 0.829 0.788 0.745 0.695 0.671 0.684
(−)Atnouter 0.821 0.767 0.732 0.669 0.663 0.668
(−)char HIT 0.556 0.815 0.528 0.498 0.664 0.539

(b) Named Entity Recognition

Model
Hindi Telugu Bengali Spanish

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
BLSTM-CRF 0.821 0.913 0.782 0.595 0.747 0.572 0.842 0.851 0.817 0.704 0.836 0.680
HAN 0.802 0.879 0.815 0.693 0.701 0.684 0.811 0.823 0.818 0.497 0.629 0.527
ML-BERT 0.833 0.884 0.847 0.802 0.762 0.771 0.793 0.815 0.807 0.853 0.808 0.802
CS-ELMO 0.885 0.961 0.910 0.831 0.790 0.775 0.873 0.851 0.847 0.740 0.835 0.729
HIT 0.918 0.955 0.919 0.815 0.749 0.762 0.841 0.855 0.853 0.871 0.822 0.825
(−)Atnouter 0.893 0.948 0.914 0.839 0.793 0.786 0.839 0.852 0.845 0.859 0.813 0.820
(−)char HIT 0.686 0.922 0.708 0.629 0.758 0.626 0.802 0.830 0.819 0.723 0.796 0.732

(c) PoS tagging

Model B RL M
Seq2Seq† 15.49 35.29 23.72
Attentive-Seq2Seq† 16.55 36.25 24.97
Pointer Generator† 17.62 37.32 25.61
GFF-Pointer† 21.55 40.21 28.37
HIT 28.22 51.52 29.59
(−)Atnouter 25.95 49.19 27.63
(−)char HIT 21.83 42.19 27.89

(d) Hindi-English MT

Table 5.1: Experimental results. Highest scores are highlighted in bold.

18

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

5.4.3 PoS Tagging

We present results of PoS tagging for different languages in Table 5.1c. We ob-
serve that HIT consistently performs better than the baselines for majority of the
languages – it outperforms as high as 2.3% for Spanish based on F1 metric. On the
other hand, CS-ELMo performs better among the baselines across three languages.
For Spanish, ML-BERT performs closest to our HIT model. HIT ablations in Ta-
ble 5.1c show that the importance of subword-level representation learning as their
absence drops the performance by over 14% on average across all the datasets.

5.4.4 Machine Translation

Results for the machine translation task is compiled in Table 5.1d. We compare
HIT with the following baselines: Seq2Seq [42], Attentive-Seq2Seq [43], Pointer-
Generator [44] and GFF-Pointer [30]. We observe that HIT considerably outperforms
all baselines across all metrics – especially on ROUGE-L with a difference of 9
points compared to the best baseline. We also observe the significant effect of char-
level encoding in HIT – we obtain 21.83 BLEU, 42.19 Rouge, and 27.89 METEOR
scores without the char-level encoding against 28.22 BLEU, 51.52 Rouge, and 29.59
METEOR scores with char-level encoding.

5.4.5 Sarcasm Detection and Humour Classification

We present results for the sarcasm detection and humour classification tasks in
Table 5.2. We observe that HIT reports the best results against all baselines in the
humour detection task – it yields 0.593 F1-score as compared to the best baseline
(HAN) F1-score of 0.580. We also observe that removing outer-product attention
or the char-level encoding results in inferior performance. On the other hand, HIT

Model
Hindi

Prec Rec F1
BLSTM 0.480 0.482 0.473
HAN 0.492 0.495 0.487
ML-BERT 0.504 0.501 0.484
CS-ELMO 0.494 0.496 0.489
HIT 0.478 0.487 0.475
(−)Atnouter 0.505 0.502 0.490
(−)char HIT 0.480 0.489 0.479

(a) Sarcasm detection

Model
Hindi

Prec Rec F1
BLSTM 0.592 0.576 0.578
HAN 0.588 0.580 0.580
ML-BERT 0.565 0.569 0.567
CS-ELMO 0.573 0.570 0.570
HIT 0.592 0.596 0.593
(−)Atnouter 0.590 0.593 0.591
(−)char HIT 0.583 0.586 0.584

(b) Humour classification

Table 5.2: Experimental results on the MaSaC dataset.

19

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

obtains a comparable F1-score of 0.475 against the best F1-score of 0.490 without
the outer-product attention module in the sarcasm detection task. Moreover, the per-
formances of other baselines are also superior to the HIT’s performance.

5.4.6 Intent Detection and Slot Filling

We compile the experimental results for the intent detection and slot-filling tasks
in Tables 5.3a and 5.3b, respectively. The HIT model outperforms all baselines in all
the languages. For the Hindi, Bengali, and Gujarati languages, HIT obtains improve-
ments of +0.011, +0.004, and +0.011 points in F1-scores, respectively, against the
best baseline. Among baselines, both HAN and CS-ELMO are better in 2 languages
each – HAN in Gujarati and Tamil; CS-ELMO is Hindi and Bengali.

Model
Hindi Tamil Bengali Gujarati

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
BLSTM 0.901 0.885 0.865 0.911 0.908 0.904 0.908 0.899 0.894 0.931 0.922 0.915
HAN 0.910 0.892 0.880 0.932 0.927 0.921 0.916 0.908 0.897 0.932 0.924 0.917
ML-BERT 0.911 0.901 0.883 0.925 0.918 0.909 0.919 0.911 0.899 0.908 0.887 0.868
CS-ELMO 0.906 0.894 0.882 0.924 0.924 0.915 0.927 0.923 0.916 0.909 0.900 0.885
HIT 0.906 0.908 0.893 0.918 0.917 0.907 0.935 0.929 0.920 0.947 0.926 0.928
(−)Atnouter 0.913 0.895 0.880 0.927 0.929 0.921 0.919 0.880 0.863 0.906 0.899 0.886
(−)char HIT 0.900 0.881 0.862 0.883 0.861 0.839 0.900 0.888 0.873 0.906 0.905 0.892

(a) Intent detection

Model
Hindi Tamil Bengali Gujarati

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
BLSTM-CRF 0.924 0.919 0.917 0.911 0.912 0.911 0.927 0.928 0.927 0.930 0.907 0.915
HAN 0.930 0.921 0.924 0.915 0.921 0.921 0.931 0.931 0.929 0.942 0.936 0.938
ML-BERT 0.927 0.922 0.924 0.913 0.921 0.924 0.932 0.929 0.928 0.933 0.909 0.917
CS-ELMO 0.936 0.925 0.930 0.913 0.921 0.922 0.931 0.928 0.928 0.935 0.935 0.934
HIT 0.913 0.924 0.918 0.915 0.923 0.924 0.949 0.937 0.942 0.944 0.913 0.925
(−)Atnouter 0.928 0.921 0.923 0.910 0.919 0.921 0.927 0.929 0.926 0.931 0.909 0.916
(−)char HIT 0.915 0.921 0.917 0.913 0.919 0.923 0.934 0.927 0.928 0.938 0.893 0.910

(b) Slot filling

Table 5.3: Experimental results on the intent detection and slot filling tasks.

In the slot-filling task, HIT achieves better performance than all other baselines
in 2 out of 4 languages. Among all languages, the margin is significantly higher in
Bengali, where HIT achieves 1.3% better F1-score than HAN, the best baseline. For
Tamil, both HIT and ML-BERT achieve 0.924 F1 score, albeit HIT achieves better
precision than ML-BERT. On the other hand, HAN performs the best in Gujarati
with an F1-score of 0.938. In comparison, omitting outer-product attention in HIT

20

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

yields better score than vanilla HIT in Hindi. Moreover, CS-ELMO turns out to be
the best baseline for Hindi, achieving 0.012 points better F1 than HIT.

5.4.7 Response Generation

The results for the response generation tasks in 4 languages – Hindi, Tamil, Ben-
gali, and Gujarati – are reported in Table 5.4. Similar to the machine translation task,
we employ BLEU, ROUGE, and METEOR scores to evaluate the performance of the
generated response.

Model
Hindi Tamil Bengali Gujarati

B RL M B RL M B RL M B RL M
BLSTM 26.66 39.12 10.62 30.61 40.85 13.04 23.50 31.47 7.11 22.11 38.33 10.84
HAN 30.24 41.62 11.42 29.91 44.85 12.18 28.50 44.47 9.37 29.22 41.73 11.21
ML-BERT 21.16 31.51 10.11 25.55 26.66 8.02 22.22 30.02 5.94 19.22 36.06 9.83
CS-ELMO 22.83 36.69 12.40 28.77 28.77 8.18 23.64 32.93 6.29 18.05 35.96 10.62
HIT 27.70 44.21 10.77 32.79 46.81 14.26 31.55 47.71 10.15 27.49 49.29 12.43
(−)Atnouter 32.70 45.96 10.22 34.16 48.21 13.47 33.06 46.16 10.50 23.79 43.53 11.69
(−)char HIT 32.25 44.74 10.07 35.42 45.77 8.85 33.41 46.79 8.24 22.15 43.30 8.38

Table 5.4: Experimental results on response generation.
We observe that HIT and its variants report better scores for all three metrics in

majority of the cases – except for the 2 cases where CS-ELMO and HAN obtain
better METEOR and BLEU scores in Hindi and Gujarati, respectively. Moreover,
with HIT, we obtain the best scores for 4 out 12 cases (3 each for 4 languages) in the
range of 1-8 improvement points against comparative baselines. In other cases, HIT
yields comparative results against its variants.

In particular, we note that the HIT model without character embeddings performs
better than original HIT for majority of the languages. We hypothesize that in gener-
ative tasks like response generation, getting rid of the sub-word level representations
might aid in reducing noises from input sequence and assist in achieving better gen-
erative performance.

5.5 Comparison with MURIL

Recently, Khanuja et al. [19] proposed MURIL, a large-scale pre-trained language
model for Indian languages. It reports state-of-the-art performances for multiple
tasks. In this section, we compare HIT with MURIL elaborately and understand the
strengths and weaknesses of these methods. We report the performances of MURIL
and HIT along with the best performing baselines in respective tasks in Table 5.5.
In the sentiment classification task (c.f. Table 5.5a), we observe that HIT outper-
forms MURIL in all 4 languages, with a wide margin of 3% F1-score. We further

21

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

Task Lang
Baseline* MURIL HIT

P R F P R F P R F

Sent

Hi 0.680 0.671 0.673 0.661 0.678 0.669 0.745 0.702 0.703
Tm 0.515 0.432 0.459 0.444 0.408 0.425 0.520 0.451 0.473
Mm 0.666 0.630 0.642 0.621 0.643 0.630 0.718 0.628 0.655
Sp 0.451 0.453 0.440 0.429 0.423 0.424 0.502 0.454 0.460

PoS

Hi 0.885 0.961 0.910 0.904 0.974 0.914 0.918 0.955 0.919
Te 0.831 0.790 0.775 0.844 0.798 0.786 0.839 0.793 0.786
Bn 0.873 0.851 0.847 0.873 0.824 0.846 0.841 0.855 0.853
Sp 0.853 0.835 0.802 0.862 0.824 0.809 0.871 0.822 0.825

NER
Hi 0.815 0.780 0.735 0.817 0.821 0.739 0.829 0.815 0.745
Sp 0.683 0.679 0.671 0.659 0.664 0.670 0.695 0.671 0.684

Sarcasm Hi 0.504 0.501 0.489 0.565 0.541 0.551 0.505 0.502 0.490
Humour Hi 0.592 0.580 0.580 0.622 0.625 0.614 0.592 0.596 0.593

Intent

Hi 0.911 0.901 0.883 0.912 0.911 0.905 0.913 0.908 0.893
Tm 0.932 0.927 0.921 0.918 0.917 0.907 0.927 0.929 0.921
Bn 0.927 0.923 0.916 0.941 0.935 0.931 0.935 0.929 0.920
Gj 0.931 0.924 0.917 0.941 0.925 0.927 0.947 0.926 0.928

Slot-fill

Hi 0.936 0.925 0.930 0.944 0.943 0.943 0.928 0.924 0.923
Tm 0.915 0.921 0.924 0.918 0.914 0.914 0.915 0.923 0.924
Bn 0.932 0.931 0.929 0.948 0.947 0.948 0.949 0.937 0.942
Gj 0.942 0.936 0.938 0.932 0.927 0.928 0.944 0.913 0.925

(a) Classification and Sequence labelling tasks

Task Lang
Baseline MURIL HIT

B R M B R M B R M
MT Hi-En 21.55 40.21 28.37 27.82 54.28 29.06 28.22 51.52 29.58

Res. Gen

Hi 30.24 41.62 12.40 36.05 52.18 16.08 32.70 45.96 10.77
Tm 30.61 44.85 13.04 30.46 37.63 10.27 35.42 48.21 14.26
Bn 28.50 44.47 9.37 31.08 46.14 9.70 33.41 47.71 10.50
Gj 29.22 41.73 11.21 25.38 43.15 11.69 27.49 49.29 12.43

(b) Generation Tasks

Table 5.5: Comparative study between HIT and MURIL. * denotes the respective
best baseline system from Tables 5.1 – 5.4.

observe that the MURIL’s performance is inferior to the best baseline as well. We
argue that the superior performances of HIT and the best baselines (viz. CS-ELMO
and HAN) against MURIL is due the effectiveness of the sub-word and hierarchical
representations for learning semantics in code-mixed texts.

Even on PoS tagging, we observe a similar trend, in which HIT achieves 1% better
F1 score on average, as compared to MURIL, across all the languages. The difference
is wider for Spanish, possibly due of the pre-training objective of MURIL. Similarly,
for the NER classification task, supervised representation learning methods like HIT
and CS-ELMo perform better than MURIL. On the other hand, in the sarcasm detec-
tion and humour classification tasks, we observe that MURIL outperforms (by 6%
and 2%, respectively) HIT. This could be attributed to the fact that the MaSaC dataset

22

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

contains over 32% of monolingual Hindi text transliterated to English, which goes in
favor of MURIL. Similarly, in the intent classification and slot-filling tasks, MURIL
tends to perform better than HIT and other baselines. We observe that 40% of the
tokens in these datasets are either in English or language invariant, which aids in
superior performance of MURIL. We report the comparison of HIT and MURIL on
generative tasks in Table 5.5b. In the machine translation task, both HIT and MURIL
perform significantly better than the other baselines. Moreover, HIT reports the best
scores in BLEU and METEOR, whereas, MURIL yields better ROUGE score. On
the other hand, in response generation, HIT outperforms MURIL in 3 out of 4 lan-
guages, with only Hindi being the exception, in which MURIL achieves 3.5%, 6%,
and 5% better scores in BLEU, ROUGE-L, and METEOR, respectively.

Based on the observations made in the comparative study, we could conclude
that HIT captures the semantics and syntax of texts with high code-mixed index
(CMI) [45] better than MURIL and ML-BERT, which are primarily pre-trained on
monolingual corpus and work well on texts with low CMI. Even the other baselines
– HAN and CS-ELMo that utilize the hierarchical structure of code-mixed texts tend
to outperform MURIL in classification tasks on texts having high code-mixing index.

5.6 HIT’s Performance on Monolingual Data

In this section, we outline the performance of HIT for monolingual and low-
resource settings. We consider the sentiment classification dataset curated by akhtar-
etal-2016-aspect, containing 5417 transliterated Hindi reviews with 4 sentiment la-
bels - positive, negative, neutral, and conflict. We also utilize a Magahi POS dataset
[46], annotated with 33 tags from the BIS-tagset 3. We report the performance of
HIT and other baselines on these two datasets in Table 5.6. For the Hindi sentiment
classification task, we observe that HIT yields an F1-score of 0.635, which is better
than CS-ELMo and ML-BERT by 9.3% and 5.9%. Also, for Magahi POS, HIT re-
ports the best F1-score of 0.775 – increments of +2.1% and +9.5% over CS-ELMo
and ML-BERT, respectively. These results suggest that HIT is capable of handling
monolingual and low-resource texts in an efficient manner.

3https://thottingal.in/blog/2019/09/10/bis-pos-tagset-review/

23

https://thottingal.in/blog/2019/09/10/bis-pos-tagset-review/

CHAPTER 5. EXPERIMENTS AND RESULTS Tharun S

Model Hi Sentiment Magahi POS
Pr. Re. F1 Pr. Re. F1

BiLSTM 0.619 0.533 0.554 0.594 0.804 0.626
HAN 0.602 0.528 0.551 0.729 0.857 0.649
ML-BERT 0.604 0.556 0.576 0.757 0.867 0.708
CS-ELMO 0.593 0.520 0.542 0.771 0.884 0.759
HIT 0.641 0.629 0.635 0.783 0.913 0.775

Table 5.6: Performance of HIT on monolingual tasks. Best scores are highlighted in
bold.

24

Chapter 6

Generalization through Pre-training

In order to make our framework more robust and task-invariant, we adopt sev-
eral pre-training strategies to learn a task-invariant code-mixed representation from
texts. We consolidate the language-specific datasets and conduct pre-training. With
this strategy, our representation learning model leverages a larger dataset to learn
a generic representation for each text that can be utilized in any downstream su-
pervised task. Precisely, we adopt masked language modeling (MLM), zero-shot
learning (ZSL), and transfer learning. Among these, only MLM is a pre-training
objective, while the other two are learning paradigms that utilize the knowledge ei-
ther from other datasets, or from an already trained model. With these pre-training
objectives, the high-level learning of the model is shared across tasks, thus making
our representation learning task-invariant and generalized. The pre-trained semantic
knowledge can be utilized by adding a separate task-specific dense layer during the
fine-tuning stage. This way we can ensure that HIT does not overfit on any particular
task, rather, learns the underlying semantics of the code-mixed texts.

In the subsequent sections, we demonstrate several analyses to showcase the task-
invariance and generalizability aspects of HIT representation, learned through pre-
training.

6.1 Pre-training Objectives

6.1.1 Masked Language Modeling (MLM)

We model MLM following Devlin et al. [18] to robustly learn semantics and
contextual representations that are task-invariant. Given a sentence, we choose 15%
of the tokens for modifying under this objective as follows - (a) 80% of the chosen
words are replaced with mask token “[MASK]”, (b) 10% of the chosen tokens are
replaced with a random token from the vocabulary, and (c) 10% of the tokens are
retained without any replacement. This forms the input, and the unmodified sentence
is the output to be generated. We implement HIT for extracting character, subword,
and word embeddings coupled with FAME to pre-train this objective. For evaluating
on downstream tasks, we implement a simple feed-forward network classifier with

25

CHAPTER 6. GENERALIZATION THROUGH PRE-TRAINING Tharun S

Task MLM
Hindi

Prec Rec F1
Humour w 0.548 0.509 0.506

w/o 0.592 0.596 0.593
Sarcasm w 0.635 0.573 0.592

w/o 0.478 0.487 0.475
Sentiment w 0.562 0.512 0.512

w/o 0.745 0.702 0.703
Intent w 0.931 0.918 0.922
detection w/o 0.906 0.908 0.893

(a) Masked Language Modeling

Task ZSL
Hindi

Prec Rec F1
Humour w 0.662 0.668 0.664

w/o 0.592 0.596 0.593
Sarcasm w 0.684 0.696 0.681

w/o 0.478 0.487 0.475
Sentiment w 0.832 0.794 0.796

w/o 0.745 0.702 0.703
Intent w 0.892 0.889 0.882
detection w/o 0.906 0.908 0.893

(b) Zero-Shot Learning

Source Task Fine-tune
Target Task

Hindi-English Spanish-English
POS NER Sentiment POS NER Sentiment

POS w
0.919

0.578 0.863
0.825

0.656 0.419
w/o 0.702 0.890 0.710 0.417

NER w 0.873
0.745

0.893 0.663
0.684

0.446
w/o 0.924 0.885 0.881 0.473

Sentiment w 0.928 0.691
0.703

0.732 0.687
0.460

w/o 0.936 0.729 0.918 0.969

(c) Transfer Learning for Hi-En and Sp-En

Table 6.1: Experimental results of our HIT model on (a) Masked Language Mod-
eling for Hindi-English, (b) Zero-Shot Learning for Hindi-English, and (c) Trans-
fer learning for Hindi-English and Spanish-English datasets. For MLM and ZSL,
we highlight the rows where the model achieves better result with pre-training. For
transfer learning, we highlight the rows where the model achieves better performance
by transferring knowledge from the source task to target task.

HIT as its backbone embeddings to compare the performance with and without MLM
pre-training.

6.1.2 Zero-Shot Learning (ZSL)

In this approach, we leverage representation learning across the input text and
the target classes. Given a set of input texts {a1, a2, . . . , an} and target classes
{c(j)1 , c

(j)
2 , . . . , c

(j)
n } for each task j, where each input text belongs to one target class

for each task, we prepare the input dataset for each input text ai as follows – (a) An
input pair (ai, c

(j)
i) where c

(j)
i is the true target class and (b) An input pair (ai, c

(j)
i)

where c
(j)
i is any target class except c(j)i . We employ a negative sampling to generate

the false target class randomly. With this dataset, we process the HIT representations
for both input text and target class and compute cosine similarity to classify the in-
stance as entailment or contradiction. During inference, ZSL objective helps us in

26

CHAPTER 6. GENERALIZATION THROUGH PRE-TRAINING Tharun S

achieving a robust semantic representation for a text without explicitly using any text
label.

Due to the limited data availability, we only use Hindi-English code-mixed texts
for the zero-shot training. Also, for simplicity, we use only sequence classifica-
tion tasks – sentiment, humour, and sarcasm classification for training this objective.
These tasks are developed with a similar semantic objective, which makes them eas-
ier to bind together in a multi-task learning framework. A total of 7 labels are used to
train the ZSL objective, namely - humour, non-humour, sarcasm, non-sarcasm, posi-
tive sentiment, negative sentiment, neutral sentiment. Intent detection task dataset is
used only for testing.

6.2 Results with Pre-training Objectives

6.2.1 Masked Language Modeling

We show results for both with (w) and without (w/o) MLM pre-training in Table
6.1a. Due to the availability of the Hindi dataset across 4 tasks, we only conduct
this analysis on Hindi language. We consolidate the available datasets containing
Hindi scripts for the pre-training purpose. The representation learned through MLM
is used and subsequently fine-tuned in sequence classification tasks. We observe a
decrease in humour and sentiment tasks when we adapt the initial embedding from
the pre-trained model. On the other hand, with MLM pre-training, we achieve 12%
better F1-score in sarcasm detection and 3% better F1-score in intent classification.
Moreover, we observe that HIT even outperforms MURIL in the intent classification
task.

6.2.2 Zero-Shot Learning

We show the results in Table 6.1b. Comparatively, zero-shot learning has per-
formed considerably better as compared to vanilla HIT (without any pre-training ob-
jective). On the sentiment classification task, F1-score of 0.796 is achieved – a signif-
icant 9% jump over the vanilla HIT model. Further, we observe similar phenomena
on the sarcasm detection (0.681 compared to 0.475) and humour classification (0.664
compared to 0.593) tasks. Moreover, ZSL outperforms on all the tasks; hence, as-
serting the scope of pre-training objectives that can leverage larger training corpus.
Furthermore, in comparison with MURIL, HIT with zero-shot learning achieves bet-
ter results on the humour and sarcasm classification tasks; thus demonstrating the
necessity of proper pre-training objective to learn better semantics.

27

CHAPTER 6. GENERALIZATION THROUGH PRE-TRAINING Tharun S

6.2.3 Transfer Learning

To completely capture different setups of learning across code-mixed datasets, we
explore a straightforward transfer learning setup with (w) and without (w/o) fine-
tuning. As with previous learning setups, these experiments shed light on the model’s
capabilities to learn linguistic and semantic features rather than task-specific features.
For brevity, we choose Hindi and Spanish datasets, as they have multiple tasks in
them and maximum overlap in terms of tasks. Therefore, we select the PoS, NER,
and sentiment classification tasks for comparison. Table 6.1c presents results for
Hindi-English and Spanish-English code-mixed languages, respectively. For each
case, we train our HIT model on one source task, and subsequently run experiments
on the other two target tasks. For the Hindi code-mixed dataset, except for NER as
the source task, we observe positive performance transfer in other cases. Considering
PoS as the source task, we observe an improvement in sentiment classification as
target. Similarly, with sentiment as the source task, we observe improvements in
both PoS and NER tasks. Likewise in the Spanish dataset, HIT reports improvements
in NER with PoS as the source task. We observe similar phenomena with NER
and sentiment as source tasks. This shows that our HIT model is able to generalise
and learn linguistic and semantic representation given sufficient number of diverse
training set.

28

Chapter 7

Error Analyses and Discussion

In this chapter, we elaborately perform quantitative and qualitative analyses of
HIT and the effectiveness of pre-training objectives for improving downstream task
performance for code-mixed texts.

7.1 Fine-tuning Tasks

We present confusion matrices of HIT for all 6 code-mixed Hinglish classification
tasks in Table 7.1. We observe that class-wise true positives in respective tasks are
significant in majority of the cases. Also, except for a few cases, false-negative and
false-positives are non-significant. In NER (c.f. Table 7.1a), we observe that HIT
majorly faces problem with the other (‘O’) class – false negatives for the ‘person’
and ‘organization’ tags are relatively higher. Moreover, we also observe a signifi-
cant 47% false positive rate for ‘B-Org’ and ‘O’. In comparison, we observe 20%
false positives for the ‘neural’ class in sentiment classification. On the other hand,
we observe an overall higher error rates for the humour (Table 7.1d) and sarcasm
(Table 7.1c) classification tasks – true positives are relatively lower than other tasks
and false negative are also higher. This could be due to the complex nature of the
humour and sarcasm detection tasks. In contrast, HIT performs significantly well for
the intent classification (Table 7.1e) and slot-filling (Table 7.1f) tasks – both false-
positives and false-negatives are minute in comparison with the true positives. The
most misclassified label in intent detection is inform whose utterances encompass
longer sentences with characterstics of multiple intent values.

Furthermore, we conduct fine-grained analyses on response generation task and
compare the responses generated by HIT and the ground-truth values in Table 7.2.
Examples show generated responses as bot’s utterances. The first response in the
table is a standard greeting that is correctly generated by our model. In the second
response, the model generated the sentence with a single error only – it commits
error on the first word. However, the semantic of the generated response is arguably
intact. On the other hand, in the third example, the model fails to capture the essential
user request considering the type of cuisine requested – it predicts Malaysian instead
of Persian. Similar to the previous case, the model generates the reminder of the

29

CHAPTER 7. ERROR ANALYSES AND DISCUSSION Tharun S

Tags B-Per I-Per B-Loc I-Loc B-Org I-Org O
B-Per 0.85 0.01 - - - - 0.14
I-Per 0.03 0.87 - - - - 0.10

B-Loc - - 0.92 - 0.02 0.02 0.05
I-Loc - 0.08 - 0.85 - - 0.07
B-Org 0.02 0.02 - - 0.82 - 0.14
I-Org - - - - - 0.71 0.29

O - - - - 0.47 - 0.53

(a) NER

Labels Pos Neg Neu
Pos 0.85 0.05 0.10
Neg 0.03 0.87 0.10
Neu - 0.02 0.98

(b) Sentiment

Labels Sarcasm Non-Sarcasm
Sar 0.67 0.33

Non-Sar 0.05 0.95

(c) Sarcasm

Labels Humour Non-Humour
Hum 0.63 0.37

Non-Hum 0.21 0.79

(d) Humour

Intent Ack Affirm Cant.help Confirm Deny Expl-conf Impl-conf Inform Negate Offer Repeat Requalts Reqmore Request Silence Thankyou Welcomemsg
Ack 0.962 - - - - - - 0.02 - - - - - 0.018 - - -

Affirm - 0.877 0.015 - - - - - - - - 0.108 - - - - -
Cant.help - - 0.997 - - - - - 0.002 - - - - - 0.001 - -
Confirm - - - 0.687 - - - 0.297 - - - 0.016 - - - - -

Deny - - - - 0.909 - - 0.091 - - - - - - - - -
Expl-conf - - - 0.002 - 0.989 - 0.009 - - - - - - - - -
Impl-conf - - 0.239 - - - 0.474 0.279 - - - - - 0.008 - - -

Inform - - - - - 0.018 - 0.979 0.001 0.001 0.001 - - - - - -
Negate - 0.024 - - - 0.024 - 0.280 0.512 - 0.085 0.012 - 0.048 - 0.015 -
Offer - - - - - - 0.017 - - 0.979 0.004 - - - - - -

Repeat - - - - - - - 0.698 - - 0.262 0.040 - - - - -
Requalts - - - - - - - 0.090 0.020 - 0.017 0.873 - - - - -
Reqmore - - - - - - - - - - - - 1.00 - - - -
Request 0.009 0.005 - - - - - 0.039 - - - - - 0.947 - - -
Silence 0.055 0.035 - - - - - 0.096 - - - - - - 0.814 - -

Thankyou - - - - - - - - - - - - - - - 1.00 -
Welcomemsg - - - - - - - - - - - - - - - - 1.00

(e) Intent detection

Slot B-Food I-Food B-Phone I-Phone B-Addr I-Addr B-Name I-Name B-Postcode I-Postcode B-Pricerange I-Pricerange B-Slot I-Slot O
B-Food 0.962 - 0.004 - - - - - - - - - 0.004 - 0.030
I-Food - 0.877 - - 0.013 - - - - - - - - - 0.110

B-Phone - - 0.996 - - - - - - - 0.001 - - - 0.003
I-Phone - - - 0.990 - - - 0.001 - - - - - - 0.009
B-Addr - - - - 0.777 - - - - - - - - - 0.223
I-Addr - - - - - 0.820 - 0.001 - - 0.018 - - - 0.161

B-Name - 0.020 0.010 - - - 0.678 - 0.010 - 0.010 - 0.010 - 0.262
I-Name - - - - - - - 0.990 - - - - - - 0.010

B-Postcode - - - - - - - - 1.00 - - - - - -
I-Postcode - - - - - - - - - 1.00 - - - - -

B-Pricerange - - - 0.002 - - - 0.024 - - 0.834 - - - 0.140
I-Pricerange - - - - - - - - - - - - - - -

B-Slot - - - - - - - 0.021 0.002 - - - 0.667 - 0.310
I-Slot - - - - - - - - - - - - - - -

O - - 0.01 0.021 - 0.012 0.024 - 0.033 - - - - - 0.900

(f) Slot filling

Table 7.1: Confusion matrices in percentage (%) on Hindi code-mixed datasets.

30

CHAPTER 7. ERROR ANALYSES AND DISCUSSION Tharun S

1 I/p ** START CONVERSATION **
Res Ref: Hello , Cambridge restaurant system mein aapka swagat hai . Aap pa

sakte hai restaurant by area , price range ya food type . Aap ko kaise help
kar sakta hu main ? (Hello, welcome to the Cambridge restaurant system.
You can request restaurant by area, price range, or food type. How can I
help you?)

HIT: Hello , Cambridge restaurant system mein aapka swagat hai . Aap pa
sakte hai restaurant by area , price range ya food type . Aap ko kaise help
kar sakta hu main ? (Hello, welcome to the Cambridge restaurant system.
You can request restaurant by area, price range, or food type. How can I
help you?)

2 I/p ** START CONVERSATION **
Res Ref: Aap kaunse type ka food lene chahege? (Which food type would you

prefer?)
HIT: Helloap kaunse type ka food lene chahege? (Helloap which food type
would you prefer?)

3 I/p North part of town meh persian restaurant hai (Is there any persian restaurant in the north part of town?)
Res Ref: Sorry but yahan koi bhi restaurant Persian khana serve nahin karta

(Sorry but no restaurant serves Persian food here)
HIT: Hello but yahan koi bhi restaurant Malaysian khana serve nahin karta
(Hello but no restaurant serves Malaysian food here)

Table 7.2: Actual and generated responses with input text are shown for a single
round of user-bot interaction. Red color denotes contextually incorrect responses.
The input represented here is only the current user utterance for which the bot re-
sponse is predicted. To understand the complete model input at each instance, refer
to Section 3 A.

response correctly.

7.2 Generalization tasks

7.2.1 Masked Language Modeling

To understand the robustness and effectiveness of the MLM representation learn-
ing, we extract HIT’s embedding with and without pre-trained MLM backend and
conduct a fine-grained analysis. We extract the spectral embedding [47] of these
embeddings for two tasks – sentiment classification and sarcasm classification for
Hindi-English texts. We observe that the pretraining version of MLM helps our
model in achieving a cohesive representation for semantically similar texts. Fur-
ther, to understand how well these embeddings are clustered, we perform k-means
clustering on the HIT embeddings with the number of clusters being matched with
the number of classes in the respective tasks (n clusters = 3 and 2 for the senti-
ment and sarcasm classification tasks, respectively). We utilize Silhoutte score [48]
(higher the better) and Davies-Bouldin (DB) index [49] (lower the better) to indi-
cate the robustness of learned representations irrespective of the downstream tasks.
For sentiment classification, HIT with pre-trained MLM achieves a Silhoutte score of
0.536, as compared to HIT without MLM pre-training that achieves 0.379. Similarly,
HIT with MLM achieves a DB index of 0.612 against 0.997 achieved by HIT without
MLM. We observe similar phenomenon for the sarcasm classification task as well –
HIT with MLM reports better Silhoutte (+0.262) and DB scores (−0.585), compared
to the counterpart model without pre-trained MLM backend. This quantitative analy-
sis demonstrates the strength of MLM pre-training for achieving semantically richer
representation, even without proper supervision.

31

CHAPTER 7. ERROR ANALYSES AND DISCUSSION Tharun S

7.2.2 Zero-Shot Learning

We also analyze the effectiveness of HIT in zero-shot learning setup. As discussed
earlier, our approach to ZSL leverages shared information among three tasks viz.
sentiment classification, humour classification, and sarcasm detection – a total of 7
labels (humour, non-humour, sarcasm, non-sarcasm, positive, negative, neutral) are
used to learn the ZSL objective. One of the foremost observations in this setup is
the association among the three labels – non-humour, non-sarcasm, and neutral sen-
timent. The average Pearson’s correlation among these three classes, based on the
HIT prediction probability, turns out to be 0.74 with p-value ≤ 0.01. Moreover, we
observe that HIT learns to group these inputs close together leveraging the similari-
ties between them. On the other hand, sarcastic and humorous texts majorly consist
of exaggerated terms to invoke emphasis to the context and correlate with the ‘neg-
ative’ sentiment. This adds to the fundamental robustness of ZSL approach wherein
the model can group text representations in the embedding space such that different
tasks are seamlessly learnt in a shared space aiding one another.

32

Chapter 8

Conclusion and Future Work

In this paper, we presented an extensive research on code-mixed dataset on several
tasks. We explored a novel attention mechanism, FAME (Fused attention mecha-
nism) that significantly outperforms other code-mixed and multilingual representa-
tion learning methods. We conducted extensive experiments on sentiment classifi-
cation, named-entity recognition, parts-of-speech tagging, machine translation, sar-
casm detection, and humour classification. Further on conversational datasets, we ex-
plored response generation, intent detection, and slot filling tasks. Finally, to empha-
size the generalizability of our model, we observed model’s performance on Masked
Language Modeling and zero-shot learning pre-training objectives. We showed that
our HIT model is robust in learning contextual representations across Indian lan-
guages (and Spanish) and we put forward the model to be reused by the research
community. We argue that this would open a new avenue in utilizing attention-based
models in analyzing low-resource languages. An interesting direction for the future
can be to utilize these knowledge in understanding how code-mixed languages are
generated, and adapted in conversational settings like - chatbots, social medias, etc.

33

Bibliography

[1] A. Pratapa, M. Choudhury, and S. Sitaram, “Word embeddings for code-mixed lan-
guage processing,” in Proceedings of the 2018 conference on empirical methods in
natural language processing, 2018, pp. 3067–3072.

[2] G. Aguilar and T. Solorio, “From english to code-switching: Transfer learning with
strong morphological clues,” arXiv preprint arXiv:1909.05158, 2019.

[3] A. Sengupta, S. K. Bhattacharjee, T. Chakraborty, and M. S. Akhtar, “Hit-a hierarchi-
cally fused deep attention network for robust code-mixed language representation,” in
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021,
pp. 4625–4639.

[4] H. Le, T. Tran, and S. Venkatesh, “Self-attentive associative memory,” in International
Conference on Machine Learning. PMLR, 2020, pp. 5682–5691.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in NIPS, 2017, pp. 5998–6008.

[6] S. Upadhyay, M. Faruqui, C. Dyer, and D. Roth, “Cross-lingual models of word em-
beddings: An empirical comparison,” arXiv preprint arXiv:1604.00425, 2016.

[7] S. Ruder, I. Vulić, and A. Søgaard, “A survey of cross-lingual word embedding models,”
Journal of Artificial Intelligence Research, vol. 65, pp. 569–631, 2019.

[8] M. S. Akhtar, P. Sawant, S. Sen, A. Ekbal, and P. Bhattacharyya, “Solving data sparsity
for aspect based sentiment analysis using cross-linguality and multi-linguality.” As-
sociation for Computational Linguistics, 2018.

[9] M. Faruqui and C. Dyer, “Improving vector space word representations using multilin-
gual correlation,” in Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics, 2014, pp. 462–471.

[10] K. M. Hermann and P. Blunsom, “Multilingual models for compositional distributed
semantics,” arXiv preprint arXiv:1404.4641, 2014.

[11] M.-T. Luong, H. Pham, and C. D. Manning, “Bilingual word representations with
monolingual quality in mind,” in Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, 2015, pp. 151–159.

34

BIBLIOGRAPHY Tharun S

[12] I. Labutov and H. Lipson, “Generating code-switched text for lexical learning,” in Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2014, pp. 562–571.

[13] D. Gupta, P. Lenka, A. Ekbal, and P. Bhattacharyya, “Uncovering code-mixed chal-
lenges: A framework for linguistically driven question generation and neural based
question answering,” in Proceedings of the 22nd Conference on Computational Natu-
ral Language Learning, 2018, pp. 119–130.

[14] S. Banerjee, N. Moghe, S. Arora, and M. M. Khapra, “A dataset for building code-
mixed goal oriented conversation systems,” in COLING, 2018, pp. 3766–3780.

[15] V. Srivastava and M. Singh, “Phinc: A parallel hinglish social media code-mixed corpus
for machine translation,” arXiv preprint arXiv:2004.09447, 2020.

[16] A. Joshi, A. Prabhu, M. Shrivastava, and V. Varma, “Towards sub-word level composi-
tions for sentiment analysis of hindi-english code mixed text,” in COLING, 2016, pp.
2482–2491.

[17] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention net-
works for document classification,” in Proceedings of the 2016 conference of the North
American chapter of the association for computational linguistics: human language
technologies, 2016, pp. 1480–1489.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[19] S. Khanuja, D. Bansal, S. Mehtani, S. Khosla, A. Dey, B. Gopalan, D. K. Margam,
P. Aggarwal, R. T. Nagipogu, S. Dave, et al., “Muril: Multilingual representations for
indian languages,” arXiv preprint arXiv:2103.10730, 2021.

[20] A. Pratapa, G. Bhat, M. Choudhury, S. Sitaram, S. Dandapat, and K. Bali, “Language
modeling for code-mixing: The role of linguistic theory based synthetic data,” in ACL-
2018, pp. 1543–1553.

[21] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” arXiv
preprint arXiv:2005.14165, 2020.

[22] A. Gupta, S. Menghani, S. K. Rallabandi, and A. W. Black, “Unsupervised self-training
for sentiment analysis of code-switched data,” arXiv preprint arXiv:2103.14797, 2021.

[23] S. Yadav and T. Chakraborty, “Zera-shot sentiment analysis for code-mixed data,” in
AAAI-2021, vol. 35, no. 18, 2021, pp. 15 941–15 942.

35

BIBLIOGRAPHY Tharun S

[24] B. R. Chakravarthi, V. Muralidaran, R. Priyadharshini, and J. P. McCrae, “Corpus cre-
ation for sentiment analysis in code-mixed tamil-english text,” in Proceedings of SLTU
and CCURL, 2020, pp. 202–210.

[25] P. Patwa, G. Aguilar, S. Kar, S. Pandey, S. Pykl, B. Gambäck, T. Chakraborty,
T. Solorio, and A. Das, “Semeval-2020 task 9: Overview of sentiment analysis of code-
mixed tweets,” in Proceedings of the Fourteenth Workshop on Semantic Evaluation,
2020, pp. 774–790.

[26] V. Singh, D. Vijay, S. S. Akhtar, and M. Shrivastava, “Named entity recognition for
hindi-english code-mixed social media text,” in Proc. 7th Named Entities Workshop,
pp. 27–35.

[27] G. Aguilar, F. AlGhamdi, V. Soto, M. Diab, J. Hirschberg, and T. Solorio,
“Named entity recognition on code-switched data: Overview of the CALCS
2018 shared task,” in CALCS, 2018, pp. 138–147. [Online]. Available: https:
//www.aclweb.org/anthology/W18-3219

[28] K. Singh, I. Sen, and P. Kumaraguru, “A Twitter corpus for Hindi-English
code mixed POS tagging,” in Proc. 6th Int. Workshop on NLP for Social
Media. Melbourne, Australia: ACL, July 2018, pp. 12–17. [Online]. Available:
https://www.aclweb.org/anthology/W18-3503

[29] F. AlGhamdi, G. Molina, M. Diab, T. Solorio, A. Hawwari, V. Soto, and J. Hirschberg,
“Part of speech tagging for code switched data,” in Proc. 2nd Workshop on
Computational Approaches to Code Switching, 2016, pp. 98–107. [Online]. Available:
https://www.aclweb.org/anthology/W16-5812

[30] D. Gupta, A. Ekbal, and P. Bhattacharyya, “A semi-supervised approach to
generate the code-mixed text using pre-trained encoder and transfer learning,” in
Findings of the ACL: EMNLP 2020, 2020, pp. 2267–2280. [Online]. Available:
https://www.aclweb.org/anthology/2020.findings-emnlp.206

[31] M. Henderson, B. Thomson, and J. D. Williams, “The second dialog state tracking
challenge,” in SIGDIAL-2014, pp. 263–272.

[32] M. Bedi, S. Kumar, M. S. Akhtar, and T. Chakraborty, “Multi-modal sarcasm detection
and humor classification in code-mixed conversations,” IEEE Transactions on Affective
Computing, 2021.

[33] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

36

https://www.aclweb.org/anthology/W18-3219
https://www.aclweb.org/anthology/W18-3219
https://www.aclweb.org/anthology/W18-3503
https://www.aclweb.org/anthology/W16-5812
https://www.aclweb.org/anthology/2020.findings-emnlp.206

BIBLIOGRAPHY Tharun S

[34] S. Bansal, V. Garimella, A. Suhane, J. Patro, and A. Mukherjee, “Code-switching pat-
terns can be an effective route to improve performance of downstream nlp applica-
tions: A case study of humour, sarcasm and hate speech detection,” arXiv preprint
arXiv:2005.02295, 2020.

[35] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summa-
rization branches out, 2004, pp. 74–81.

[36] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evalu-
ation of machine translation,” in Proceedings of the 40th annual meeting of the Associ-
ation for Computational Linguistics, 2002, pp. 311–318.

[37] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments,” in Proceedings of the acl workshop on in-
trinsic and extrinsic evaluation measures for machine translation and/or summariza-
tion, 2005, pp. 65–72.

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[39] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,
Louisiana: Association for Computational Linguistics, June 2018, pp. 2227–2237.
[Online]. Available: https://aclanthology.org/N18-1202

[40] J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson, “Xtreme: A mas-
sively multilingual multi-task benchmark for evaluating cross-lingual generalisation,”
in ICML, 2020, pp. 4411–4421.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[42] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in NIPS, 2014, pp. 3104–3112.

[43] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[44] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-
generator networks,” arXiv preprint arXiv:1704.04368, 2017.

[45] B. Gambäck and A. Das, “On measuring the complexity of code-mixing,” in ICON,
2014, pp. 1–7.

37

https://aclanthology.org/N18-1202

BIBLIOGRAPHY Tharun S

[46] R. Kumar, B. Lahiri, and D. Alok, “Developing a POS tagger for Magahi: A
comparative study,” in Proceedings of the 10th Workshop on Asian Language
Resources. Mumbai, India: The COLING 2012 Organizing Committee, Dec. 2012,
pp. 105–114. [Online]. Available: https://www.aclweb.org/anthology/W12-5212

[47] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[48] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–
65, 1987.

[49] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE TPAMI, no. 2,
pp. 224–227, 1979.

38

https://www.aclweb.org/anthology/W12-5212

	Introduction
	Background
	Motivation
	Experiments
	Contributions

	Related Work
	Studies on Code-mixing
	Generalization tasks
	Comparison with previous work

	Dataset and Tasks
	Sentiment Classification
	PoS Tagging
	Machine Translation
	Response Generation
	Intent Detection and Slot Filling
	Sarcasm Detection and Humour Classification

	Our Methodology
	Fused-Attention Mechanism (FAME)
	Multi-Headed Attention
	Outer-Product Attention

	HIT Encoders
	Character-level HIT
	Word-level HIT

	Task-specific Layers

	Experiments and Results
	Evaluation Metrics
	Baseline Models
	BiLSTM
	Subword-LSTM
	ML-BERT
	HAN
	CS-ELMo
	MURIL

	Experimental Setup
	Experimental Results
	Sentiment Classification
	Named-Entity Recognition
	PoS Tagging
	Machine Translation
	Sarcasm Detection and Humour Classification
	Intent Detection and Slot Filling
	Response Generation

	Comparison with MURIL
	HIT's Performance on Monolingual Data

	Generalization through Pre-training
	Pre-training Objectives
	Masked Language Modeling (MLM)
	Zero-Shot Learning (ZSL)

	Results with Pre-training Objectives
	Masked Language Modeling
	Zero-Shot Learning
	Transfer Learning

	Error Analyses and Discussion
	Fine-tuning Tasks
	Generalization tasks
	Masked Language Modeling
	Zero-Shot Learning

	Conclusion and Future Work

